SYSTEMS EXAM Fall 2022 90 minutes

Choose only two problems on the exam to solve. Check
the boxes below for the problems for which you are
submitting answers.

submitting ansv	wers.				
	1 2 3				
How many ans	wer pages t	total?			
Do not write o answer pages		sheet or	on the	back of	your
 (Print full Nan	 ne)		_		
(signature)			_		
(NetId)			_		

1. (20pts Total) CPU Scheduling

a) (4pts) What are the 5

3) (20 pts Total) Process Synchronization

- a) (4pts) Compare and contrast the following two (2) methods for solving the synchronization problem: Atomic Instruction and Mutex Lock. Specify how each of these work in words. (Do not write code).
- b) (4pts) Under what conditions does a race condition occur, and why should it be avoided?
- c) (4pts) Consider the incorrect solution below to the ining P problem below. There are 5 philosophers. Philosopher i where (i = 0, 1, 2, 3, 4). There are five (5) semaphores fork(i) which are all initialized to 1. Show a sequence of events where deadlock can occur.

```
while (true){
    think;
    wait(mutex);
    wait fork[i];
    signal(mutex);
    wait(mutex);
    wait fork[(i+1) %5];
    signal(mutex);
        eat;
        signal(fork[i]);
        signal(fork[(i+1) %5];
}
```

- d) (4pts) How would you fix the code above so that deadlock does not occur?
- e) (4pts) Assuming a correct implementation of the Dining Ph